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REPORT No. 210

INERTIA FACTORS OF ELLIPSOIDS FOR USE IN AIRSHIP DESIGN

By L. B. TUCKERMAN .

This report is based on a study made by the writer as a member of the Special Committee
on Design of Army Semirigid Airship RS-1 appointed by the National Advisory Committee
for Aeronautics.

The increasing interest in airships has made the problem of the potential flow of & fluid
about an ellipsoid of considerable practical importence. In 1833 Green,' in discussing the
effect of the surrounding medium upon the period of & pendulum, derived three elliptic inte-
grals, in terms of which practically all the characteristics of this type of motion can be expressed.
The theory of this type of motion is very fully given by Lamb,? and applications to the theory
of airships by many writers® Tables of the inertia coefficients derived from these integrals are
available for the most important special cases.* ® These tables are adequate for most purposes,
but occasionally it is desirable to know the values of these integrals in other cases where tabu-
lated values are not available. For this reason it seemed worth while to assemble a collection
of formulse which would enable them to be computed directly from standard tables of elliptic
integrals, circular and hyperbolic functions, and logarithms without the need of intermediate
transformations. Some of the formulss for special cases (elliptic cylinder, prolate spheroid,

oblate spheroid, etc.) have been published before, but the general forms and some special cases -

have not been found in previous publications.
The additionsl inertia of the translational potential flow of a fluid about triaxisl ellipsoid
is proportional to the three coefficients
K1=4—; abck, K, ='-4; abe k,,K,=‘%T abe &,

Here 47 abe is the volume of the ellipsoid and

Xy =ﬁo S { )
= 2= aok 2— ﬁo’k’ 2—v,

The additional moment of inertia of the rotational potential ﬂow is proportional to the
three coefficients

B4 abe Pt b, =8 e O e, = e T,

Here k', %’,, and %', are given as factors of the corresponding moments of inertia of the ellip-
soid itself and
b’_ c? 2 ﬁo

52 2 bz_
+e gbz_l_zz—(% B,)

K=

)
with symmetrical expressions for ¥/, and %/,.

1 George Green: “ Researches on the vibration of pendulums In flufd media.” Trans. B. 8. Ed. 1833.

1 Horace Lamb: “Hydrodynamics* (4th ed. Camb. 1916), Dp. 133-147.

1 Bes, for example, Max AMf. Muonk: “The aerodynamlic forces on afrship hulls.” N. A. C. A., Report No. 184, 1024,
« Horace Lamb: *The inertis coefficients of an ellipsofd moving fn fiuld.” G. B. A. C. A, R. & M. No. 623, 1918.
i g, Batemsan: “The inertia coefficlents of an alrship In a frictionless finid.” N. A. C. A., Report No. 164, 1923.
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In the above formule «, 8, and +, are the special values for A=0 of Green’s integrals

a=abcfm @A B=abcfw 2} 'y=abcfm 2

A ia’+)\)A X (b’+7\5 A X (c’+)\5 A
a=bz=c A=+(@+N P+N S+

To transform these integrals into the standard Legendre form substitute

. : "b b -
sn (u;k)=snu==4 ’+)\'k2 c’ <1 k” — <1
This gives ,
cn’y
.b +A=(a*—¢) Sn,u,c'+k (@®—¢¥ S
:;,nd
axn_ 2 p)
A Vf w
Then
2abe 2abe
a=m snudu=WF[u E(u)]
2abe u gndy 2abe snu cnuy
o |, iy G | B~k S
2abe u gn?y P 2abe I [snu dnu Elu) -
TE@—E ), T @ = (:’)31’7’5’3 oy LW
Here . N o
snu dnu \/ =% (IP+\) snu enu Jia’—c’i @ +n
1 @+0 @+N’ dou (@ +N) B +N)
an

U= sn"‘/ ’+7\=F(¢’ Tc) wherega Sm—"Ja’+)\

The values of u=F(p; k) and E'(u) E(¢; k) can be obtained directly from standard tables
of elliptic integrals.

Note.—The notation of elliptic integrals is not standardized Some a.uthors write the e]Jiptio mtegral of
the second kind as a function of the amplitude ¢. SBome write the argument first and the modulus or modular
angle second; some reverse the order, and some use one form at one time and another at another. Thus we may

find the following forms:
u=F (o R)=SF & o) =F(0; ) =F (0; @)

EW=E @ k=E (u; Y=E (¢; ) =E (¢; D=E (k; &) =E (4; ¢)
The more usual tables tabulate the functions according to the amplitude ¢ and the modular angle 6 so that
u=F(p;6) Eu=E (¢ 6)

Y S
e=e Ay f=en at—c?

However, the latest, and for some purposes the most convenient, tables by R. L. Hippisley ¢ tabulate u=Fp=
F (¢; 6y and E (u)=ZF (r)+¢E according to r, where r*=9(0e=90¢ %-

where

¢ 8mithsonian Mathematioal Formulss (1028), pp. 260-309.
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When A=0 the formuls simplify to

2ab.
R b‘)%af PO [ty — E (uy)]

_ 2abe (a*— c’)*P b — (@B ¢

21 W E(uy
1~(3).

VT

=

Here -

@o=sin? =sin™ ¢, u,= F (¢,; 6)

f=sin™! —.51,111"i y E(uy) =E (¢, 6)
where ¢, and ¢, are the eccentricities of the central sections normal to the intermediate (b) and
minimum (¢} axes of the ellipsoid.

These formule are sufficient for the direct evaluation of %,, %;, k,; &';, k’5, and %’y in the
general case. However, in special cases the elliptic integrals degenerate into algebraie, circular,
hyperholie, or other functions, or the coefficients take on indeterminate forms needing special
treatment. The results for many of these special cases are more readily obtsined by direct
integration of the special differential forms, but for uniformity are discussed here as limiting
forms of the general elliptic integrals.

1. VERY LoNG ELLIPSOID. Limiting case an elliptic cylinder. As @ becomes large so that

higher powers of both (%a.nd g become negligible k=1 and at the same time ¢,é%-

uo=log 2—3 and E (u,) =1
In the limit since z log z=0

=0, § £ ¥ £
=U; Pe= ¥ o=
1+E 1+%

These are of course more directly obtained by treating the two dimensional flow around an
elliptic eylinder.”
2. ErLreric pise. ¢=0. To quantities of the first order in ¢
2
%=Wziﬁ [B*u,—BE (u,)]

b=y [°F (0 —bul]

1=2[1—F E @)]
In the limit ¢=0, ¢o=%, so that 4= K and E(uz,)=E, the complete elliptic integrals,
Ve = — '

a

mod

Then in the limit e,=8,=0, v,=2, so that k;=k,=0, but ky= .
Thus K,=K,=0 and K, needs special evaluation:

1-2 E (uy)
E,=4Tabct, =4—abc 43’ ccz_—
£ Ew)

T Horacs Lamb, 1. e., pp. 76-86.
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In the limit ¢=0 _ .

K=%7modk w/ =, . .

when a="5 (circular plafe) k=e=0, E=g- g0 that K,éga’.

Again to quantities of the first order in ¢

o= Yo=Be ol e e

! 2 (o~ ﬁo)
r . Yo~ O G
k' 2y, —a)

e (CEY B S
| 4 az+bz
a,’+bz ~ B0

In the limit ¢=0,k'y=0, but k', and %', become infinite as IE- To this order of approxi-
mation.

2~ (vo= B0 =2 grg—psy [0 =) E () —bu]

2_(70_a0) =2 M-Tzc——bis [(0)’—26’) E (uo) +bzu0]

go that when ¢=0

. 4T @b‘ (a*—1?)
Kz‘ﬁ[zgaz Fj E_-Ezm

_4T @b (a?—b?) _ o
1T [P35 E+ B K] , o }
When a=} (circular disk), these become indeterminate, since k=0 and E= E'é%-_ To

quantities of the first order in (a*— 5%, (K— E) =Z —--;E» go that K’ K —i—gaﬁ

3. OBLATE SPHEROID. a¢=0>¢, k=0, k'=

E(u)=u=¢=sin—1\/‘(’:,jr";=sin—l\/ L
L+ |
and Lim 35 [u— E (w)]=1/2 (p—sin ¢ cos ¢) 8 ' _
k=0
) 2a’c 1/_821 ' eJI=¢é
then == (qo sin ¢ cos @) = 'l Kam
(@d—c)? 2 2 I+—)5

Za?c 2T=¢ e
V= (@_gymtan o= o) ="\ T=a ¢

When A=0, ¢=gin™" ¢, so that
ay=8,= '1_62 sin™ e—eJI—;)

yom 1/1 e/ e Sm_1e>

—
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In the limiting case ¢=0, e=1 (circular plate) these give as before

E=E,=0, E=5a

1648, K1y=0

46

4. PROLATE SPHEROID. aD>b=c¢, k=1,% =0, p=gdu. Thenl

-
*={@—oyh

2 .
ﬁ=7=(_a%ﬁ1/2 (sinh © cosh u—u)

{u—tanh %)

where

at—c

— ol
tanhu=sin ¢=’JGI+A= (IG’ 1— €

» @—E &

[
\/1+E=

A
2 A
sinh u cosh u=‘/<a’_"z) E‘I‘H\)=‘g \/1+G’

r
4+ I—e’+£,

U= Iog-\/ i———f :E : =log tan (% + g-)

when A=0, these reduce to
_ (1 —é3) I+e ]
a i [logj_e—l?e
I+e

(I—-e)[ e
B=v="" [1—8’—1/2 logl_—E

and

The special cases 3 and 4 are of course more readily obtained by direct integration.



